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Abstract: 

Resting-State Functional Magnetic Resonance Imaging (RS-FMRI) holds the promise of 

revealing brain functional connectivity without requiring specific tasks targeting particular 

brain systems. RS-FMRI is being used to find differences between populations even 

when a specific candidate target for traditional inferences is lacking. However, the 

problem with RS-FMRI is a lacking definition of what constitutes noise and signal. RS- 

FMRI is easy to acquire but not to analyze or draw inferences from. In this commentary 

we discuss a problem that is still treated lightly despite its significant impact on RS-

FMRI inferences: Global Signal Regression (GSReg) – the practice of projecting out 

signal averaged over the entire brain – can change resting state correlations in ways 

that dramatically alter correlation patterns and hence conclusions about brain functional 

connectedness. Although Murphy et al. in 2009 demonstrated GSReg negatively biases 

correlations, the approach remains in wide use. We revisit this issue to argue the 

problem with GSReg is more than negative bias or the interpretability of negative 

correlations. Its usage can fundamentally alter inter-regional correlations within a group, 

or their differences between groups. We used an illustrative model to clearly convey our 

objections and derived equations formalizing our conclusions. We hope this creates a 

clear context in which counterarguments can be made. We conclude that GSReg should 

not be used when studying RS-FMRI because GSReg biases correlations differently in 

different regions depending on the underlying true inter-regional correlation structure. 

GSReg can alter local and long-range correlations, potentially spreading underlying 

group differences to regions that may never have had any. Conclusions also apply to 

substitutions of GSReg for denoising with decompositions of signals aggregated over 

the network’s regions to the extent they cannot separate signals of interest from noise. 
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We touch on the need for careful accounting of nuisance parameters when making 

group comparisons of correlation maps.  
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Introduction: 

Resting State Functional Magnetic Resonance Imaging (RS-FMRI) data are 

spectacularly easy to collect (Biswal et al., 1995) and tantalizingly rich in detail 

(Anderson et al., 2011a; Bellec et al., 2010; Biswal et al., 2010; Gee et al., 2011; Honey 

et al., 2009; Jo et al., 2010; Kelly et al., 2010; Smith et al., 2009). They hold the promise 

of revealing brain functional connectivity without the complication of stimulus design, 

particularly when task performance can be problematic in children or patient populations. 

More importantly these data can be used to look for group differences between 

populations even when a specific candidate target or “seed” region for traditional 

inferences is lacking. However, while collecting resting state data is simple, proper 

analysis of these data is not. In this commentary we discuss a problem that is still 

treated lightly despite its significant impact on RS-FMRI inferences: Global Signal 

regression and its variants can alter resting state correlation maps in ways that 

dramatically alter correlation patterns and hence conclusions about brain functional 

connectedness. We also briefly touch on the need for a careful accounting of nuisance 

parameters when making group comparisons on correlation maps. 

 

The Global Signal (GS) is a time course obtained by averaging resting state time series 

over the entire brain (Desjardins et al., 2001; Macey et al., 2004). The GS is thought to 

capture background fluctuations common over all brain regions. While such fluctuations 

are likely of neuronal origins (Schölvinck et al, 2010), they have been considered a 

nuisance that masks interesting modulations between areas. Many RS-FMRI studies 

regard the GS a regressor of no interest and project or regress it out of the data prior to 
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computing the correlation coefficients between time series at a seed region and those in 

the rest of the brain. This approach, termed Global Signal Regression (GSReg) has 

been shown by Murphy et al. 2009 to inevitably bias the correlation coefficients 

downwards everywhere in the brain and consequently must introduce regions of 

negative correlations that would not have been there otherwise. The Murphy et al. 2009 

publication caused significant controversy, as it touched on the functional interpretation 

of the correlation maps (Murphy et al., 2009). As Murphy and colleagues demonstrated, 

applying GSReg can alter the correlation maps so as to suggest that some brain 

regions operate out of phase relative to others, even when the resting state data did not 

have this property prior to GSReg. It is now accepted that GSReg biases the correlation 

coefficients downwards on average, but the practice remains in common use. 

Numerous studies since Murphy et al. 2009 have focused on whether or not anti-

correlations are solely an artifact of GSReg with conclusions pointing in both directions 

(Anderson et al., 2011) (Fox et al., 2009) (Chai et al., 2011) (Chang and Glover, 2009a). 

In this commentary, we wish to avoid the question of whether anticorrelated networks 

exist or not as we find the question to be tangential to the problems resulting from the 

biasing of correlations with GSReg. We use basic models to illustrate that the effect of 

this bias cannot be ignored, as it fundamentally alters the perceived interactions 

between regions as reflected by correlation measures. 

Global Signal Regression and Its Variants Should Not Be Used:  

The basic problem derives from the fact that the GS is a composite measure of multiple 

sources of variation, some of which are nuisance (e.g. head motion, respiration and 

cardiac signals, etc.) and some of which are likely generated by coherent brain 
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networks that are present over large spatial scales that the experimenter would like to 

measure.  When these sources of variation are combined into a single regressor time 

series in an unknown mixture, as they are in the GS, multiple regression will 

inescapably underfit the nuisance components and will add in fractions of the 

components that are not native to each fMRI voxel (Figure 1). Thus, rather than 

revealing network interactions, applying GSReg can actually create them and 

significantly distort the location and magnitudes of inter-regional correlation differences 

that may exist between groups. We use three models to illustrate how GSReg can 

artificially introduce correlations, has no effect in correcting for differences in 

background and noise levels between groups, and can wildly distort group differences in 

inter-regional correlations. With these examples we hope to clearly frame the problem, 

convey the inappropriateness of GSReg, and discourage its future use. We then derive 

equations for the biased correlation matrix and show that the bias will vary by region in 

a manner dependent on the unknown true underlying correlation matrix and region size 

distribution. 

 

The Basic Model:  

To plainly illustrate the objection to GSReg, we make use of simulated datasets. Figure 

2 A represents a brain made up of three distinct circular regions and background activity. 

By design, our simulation brain is made up of 3 uncorrelated regions (1, 2, and 3) plus 

common background fluctuations. We assume that the signal yj,m(n) at voxel j and time 

sample n in a region m is modulated by three linearly additive sources:  

Yj,m(n) = vm(n) + gb b(n) + ge ej(n)   
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where vm(n) is a Gaussian N(0,1) independently and identically distributed (i.i.d.) 

timeseries particular to the region m of voxel j 

 b(n) is the Background Gaussian N(0,1) i.i.d. timeseries  

 ej(n) is Gaussian white noise at each voxel, also i.i.d. 

 gb and ge are background and noise gain factors, respectively, that are held 

constant within a group of subjects.  

We generated 30 such model brains and computed group-statistics (one- and two-

sample t-tests) on Fisher-transformed correlation maps. This is readily carried out 

interactively with AFNI’s group InstaCorr interface.  Interested readers can download a 

small archive that allows the re-creation of the data in Figures 2 and 3 interactively 

(http://afni.nimh.nih.gov/pub/dist/edu/@GSReg_demo). In Figures 2 and 3, the 

correlation seed is placed in the center of its circular region. The model for Figure 4 is 

slightly altered to introduce correlation between two regions in one of the two groups.  

  

The Baseline Pattern:  

Figure 2 B shows the group results of correlation with the seed placed in Region 1 (left 

column) and Region 2 (right column). As expected, the correlations are strongest in the 

region containing the seed, but also significantly and positively present everywhere 

because of the shared background component. Correlations with voxels forming the 

background region are masked for simplicity. 
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Ideal Background Suppression:  

In our simulated brain we can accurately measure the background fluctuation by 

averaging signal in the background region only.  We can then regress this signal 

against all of the other time series throughout the brain.  Once we’ve eliminated this 

shared background component, the pattern of correlations now accurately reflects the 

design properties of our simulated brain. Specifically, each region now shows the 

strongest correlation with itself, and no significant correlation with the other seed 

regions (see the second row in Figure 2B). 

 

GSReg Background Suppression:   

Unfortunately, in the case of real data we cannot precisely measure the background 

signal. To compensate for this problem, the typical strategy has been to substitute the 

GS for the background signal and regress it out of the data. Doing so, however, 

dramatically changes the results. This problem is illustrated in the third row of Figure 2.  

When the seed is placed in Region 1, we find that while the strong correlations within 

the seed region remain, the seed region now has significant negative correlations with 

Region 2 and with Region 3. Contrasting these results with those in row 2 (Ideal 

Background Suppression) illustrates the dramatic difference between the actual 

relationships between the seed regions and the relationships revealed after GSReg. 

The exact pattern of the correlation distortions depends on the size of the regions, and 

the relationships between their signals. Our point here, however, is that with GSReg, we 

get the results illustrated in row 3 and interpret them with the conditions of row 2 in mind. 

The inferred functional connections after GSReg do not reflect those in the model.  
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These simulated signals are simple in relation to actual RS FMRI time series. However, 

the correlation distortions we demonstrate here can occur under most conditions. The 

observations in Figure 2 remain valid even if the bandwidth of the random signals is 

reduced to a single frequency per region. The magnitude and direction of these 

distortions will vary depending on multiple factors including SNR levels, relative region 

sizes and interregional covariance structures as we demonstrate further ahead. 

However, for between group comparisons, the effect size itself is of little importance. 

What matters is the consistency of the effect differences. This can be quite problematic 

with group comparisons. 

 

GSReg and Group Differences in Background Fluctuations and Noise:  

A major problem with analyzing RS-FMRI data is that we have no model for the signal, 

and only a crude handle on noise. As a result, our effect size (the correlation coefficient) 

is a measure of signal-to-noise ratio (SNR). This is in contrast to FMRI, where the effect 

size (regressor coefficient measuring the amplitude of the BOLD response) is decoupled 

from the noise (residual variance). Unlike task-based FMRI, a change in noise between 

groups or conditions translates to a change in SNR, and therefore a change in the effect 

size in RS-FMRI. Group differences can occur in various ways unrelated to brain 

function. For example, modified breathing patterns and differences in heart rate 

variability can change the structure of BOLD physiological noise fluctuations.  Atrophy 

in an elderly group might increase the relative contribution of CSF pulsatility to a seed 

region's time course. Higher levels of movement confound in one group (e.g. children 

with ADHD) that cannot be fully removed by motion correction algorithms would induce 
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different levels of correlated noise in that group. Such differences may get reflected in 

the background signal b(n), if they are coherent enough over space, and/or increase the 

noise component e(n). However GSReg cannot be used to correct for such confounds.  

To illustrate this problem with the model we compared correlations in two groups; Group 

A and Group B, where the gain factors gb, and ge for Group B are different from those 

for Group A. Both groups have exactly the same underlying activation pattern as in 

Figure 1. If it weren’t for differences in background signal or noise levels, comparisons 

between the groups should produce no significant differences. Figure 3, row 1 shows 

group contrast where only the random noise in Group B was double that of Group A. As 

expected, without GSReg a two-sample t-test on Fisher transformed correlation 

coefficients shows significantly higher correlation at the seed’s area in Group A (left 

column). These artificially lower correlation values in Group B are purely due to the 

increased noise in that group. Not surprisingly, after GSReg, the result (right-column) is 

still the same. Group A still shows significantly higher correlation in the seed’s region 

than Group B. In the second row we doubled both of gb, and ge for group B. This also 

caused different patterns of correlation differences whether or not GSReg was used.  

In the third row, we kept the noise level constant and only increased the shared 

background signal in group B by doubling gb. Group contrast without GSReg shows less 

correlation in group A, however this difference disappears with GSReg and the lack of 

difference between groups now reflects the underlying model. Hence GSReg can 

correct for groups difference in the amount of background signal shared by all regions, 

but not when noise levels differ. However, the likelihood of such a scenario in real data 

is slim. It is known that physiological noise related to respiration (Birn et al., 2006; Wise 
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et al., 2004) and heart rate (Shmueli et al., 2007) has a differential contribution to 

resting state fluctuations across regions of the brain. GSReg can only further complicate 

the interpretation of group correlation differences in cases where background and noise 

levels are different from one group to the next. 

 

 

GSReg and Groups with Different Correlation Structure:  

An even more troubling distortion occurs when comparing two groups of subjects that 

differ in their interregional correlational structure. Consider the next example in which 

two simulated groups of subjects, Group A and Group B, differ only in the presence 

(Group B) or absence (Group A) of long-range correlations between two brain regions 

(Region 1 and Region 2; see Figure 4). In this new simulation, each local brain region (1, 

2, 3) is composed of 100 voxels, with time series that are constructed by adding 

Gaussian noise to a random time series common to that region, yielding an average 

"local" correlation of ~ 0.5.  Interregional correlations in Group B between Regions 1 

and 2 were created by allowing the common local time series in those regions to be the 

same. Figure 4 shows the average correlation values computed over all possible seed 

locations. The middle and rightmost columns show that after global signal regression, 

non-zero correlations are inappropriately and differentially introduced into the two 

groups, due to group-level differences in the signal covariance between regions.  Thus, 

the presence of one real difference in the interregional correlational structure of the two 

groups ends up manifesting as group differences in every region and for every 

interregional relationship after GSReg. GSReg fundamentally introduces dependencies 
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between independent processes.  Moreover, the extent to which this occurs will be 

difficult to anticipate a priori because it depends on the quantitative interrelationships of 

voxels/regions in both groups.  This example is particularly troubling because it is 

precisely these sorts of comparisons that researchers are most interested in assessing 

when comparing clinical and control groups in terms of local and long-range correlation 

differences in RS-FMRI studies (see Fox & Grecius, and Belmonte et al. for 

review/discussion ) (Belmonte et al., 2004; Fox and Greicius, 2010). 

A generalization of the illustrative model:  

For the reader with a penchant for linear algebra, the following derivation formalizes all 

the observations we have put forth. 

Let the brain be formed of M regions, where each region m accounts for fraction αm of 

the total number of voxels in all the regions. Let ym be an N x 1 column vector 

representing the average time series from region m. For simplicity, we will assume that 

all observations have zero mean and a standard deviation of 1, and that the only 

nuisance to be projected out will be the global signal g.  

The N x M data matrix Y is formed by the columns from each region’s time series, and 

the interregional M x M correlation matrix is given by: R = YTY 

The global signal column vector is given by: g = Y , with  a column vector formed by 

the regional weights αm . After GSReg, the signal at region m is given by:  

zm = ( I – g (gTg )-1gT )ym = (I - Y  (T R  )-1 T YT )ym 

Note that zm is dependent on both the weight (size) distribution of the regions of 

interest, and their correlation matrix.  
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To simplify the notation, we set K = Y  (T R )-1 T YT  , and write the data 

matrix after GSReg as: Z = (I – K) Y . The correlation matrix of Z is given by: 

 S = ZT Z = YT Y – YT KT Y – YT K Y + YT KT K Y  

The difference (bias) between the true correlation matrix and the one after 

GSReg is therefore: 

S – R = – YT KT Y – YT K Y + YT KT K Y     eq. 1 

In words, GSReg biases interregional correlations in a manner dependent on the 

correlation structure of the entire network, and regional size distribution, which are 

unknown in real data. Making inferences about brain correlation patterns from S can be 

misleading. Furthermore, this biasing will be different for groups that have systematic 

correlation differences, as we illustrated in example 4. 

As a didactic exercise, let us assume that regional time series (ym) are mutually 

independent (Ri =YT Y = I) and consider what happens to the bias (subscript i indicates 

derivations under the assumption of independence).   

Ki =  Y  T YT, with  being the inverse of the L2 norm of m . 

Si – Ri =  –2   T + 2( T)2
     eq. 2 

 This shows that if the signals from the various regions are independent, the bias 

of GSReg will vary between regions depending on the relative region sizes. If we make 

the further simplification of assuming equal weights, then equation 2 becomes: 

 Si – Ri = 1 (M -2 – 2M-1), where 1 is an M x M matrix of ones.  eq. 3 

Therefore, the bias under the condition of independence and equal weights is 

constant over the entire correlation matrix and depends on the total number of regions. 

For 1 region, the bias is predictably -1.0 and decreases with increasing M (at M=10 
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regions, the bias is -0.19). However neither of the conditions for eq. 2 and 3 are 

applicable with real data. Signals from different brain regions are not independent as 

evidenced by the weakly positive correlation throughout gray matter  (Jo et al, 2010; 

He and Liu, 2012), and the weighting of brain networks is not known. This leaves us 

with the problematic bias of eq.1 which distorts the true correlation between region pairs 

depending on the entire set of interregional correlations, and the distribution of regional 

sizes. 

Discussion: 

GSReg Distorts Interregional Correlations 

While it is convenient to remove common uninteresting signal – to the extent this is 

advisable given evidence of neuronal basis of global fluctuations (Schölvinck et al, 

2010), the projection of a mixture of unknown signals from multiple regions will alter 

correlation results in ways that cannot be predicted. Correlation bias will vary by region 

in a manner that depends on the unknown true underlying inter-regional correlation 

structure. It may very well be that anticorrelated networks exist in the brain, as 

evidenced with FMRI and PET results. However, seeing anticorrelation after applying 

GSReg to resting state data cannot be construed as further evidence that anticorrelated 

networks exist, or that the use of GSReg is appropriate. More importantly, as illustrated 

here, GSReg can result in group maps that suggest correlations (or correlation 

differences) between brain areas where none existed. GSReg may create, rather than 

reveal, relationships between brain regions.  

We have demonstrated the effects of GSReg using seed-based regression in part 

because the two are used in conjunction in the literature, and because correlation is a 
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simple computation that conveys the point. However there are no reasons not to expect 

GSReg to affect the outcome of other methods such ICA for example. 

While we strongly discourage the use of GSReg, we emphasize that it is crucial to 

account for the various sources of noise affecting the correlation estimates, particularly 

when comparing groups. However as a general rule, regressing components derived 

directly from a mixed time series pool of the regions of interest can alter correlations in a 

misleading manner if mixtures of the BOLD fluctuations of interest are present in these 

components. For this reason, we emphasize the importance of deriving nuisance 

timeseries from separate external measurements, such as cardiac and respiration 

signals, and from data-derived measurements that are not mixtures of the signals of 

interest, such as motion estimates, or decompositions of signals aggregated over 

regions not exhibiting BOLD fluctuations of interest (Beall, 2010; Behzadi et al, 2007; 

Birn et al., 2006; Birn et al., 2008; Chang and Glover, 2009b; Glover et al., 2000; Jo et 

al., 2010; Shmueli et al., 2007; Wise et al., 2004). Nuisance components can be derived 

from signals that include regions of interest, to the extent that the decompositions are 

capable of identifying noise components that are independent of the BOLD fluctuations 

of interest (Beall and Lowe, 2007, Kundu et al., 2011). Projecting nuisance timeseries, 

such as motion estimates, remains an imperfect way for reducing their contribution 

(Power et al., 2011). Thus, we strongly suggest the inclusion of covariates that 

summarize noise sources at the subject level and which may account for group 

differences (Mahani et al., 2011). It remains to be determined how such covariates 

should be generated from the various nuisance timeseries, and whether non-linear 

covariate modeling is necessary. However, without such covariates, group comparisons 
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in resting state are suspect. At the very least, when such covariates are included, one 

could examine the regions where these covariates explain a significant amount of 

variance and the extent to which such regions overlap with regions of interest.  

Variants on the GS: 

In this commentary, the GS is formed by averaging RS-FMRI time series over the entire 

brain. However, other averaging approaches can result in regressors that have a similar 

structure to the GS and thus similar effects when regressed out prior to correlation. As 

Jo et al (2010) have shown, an average time series over all white matter voxels 

correlates mostly with gray matter voxels and the GS, not the bulk of white matter 

voxels. This correlation is greatly reduced if the white matter mask is eroded to reduce 

contamination from gray matter voxels. In general, regressors containing BOLD signal 

emanating from gray matter (GM), whether from partial voluming, poor alignment 

between segmentation results and RS-FMRI time series, or draining vessels will be 

highly correlated with the GS and thus cause similar problems. When attempting to 

estimate noise components by reducing signals aggregated over multiple regions, it is 

important to minimize the contamination of such components with BOLD signals of 

interest. This can be done by avoiding regions modulated by neural activity (Behzadi et 

al, 2007; Jo et al, 2011), or devising approaches that can separate noise from signal 

(Beall and Lowe, 2007, Kundu et al, 2011).  

Basic Model vs. Real Data: 

We have used a model to illustrate how the use of GSReg can distort the correlation 

between regions and thus lead to potentially erroneous inferences, especially when 

comparing groups with differing interregional correlation differences as illustrated in 
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figure 4. The illustrative model was very basic by design, to clearly convey the pitfalls of 

GSReg, which go beyond affecting the interpretability of negative correlations. The 

closed form expression of correlation matrix bias (eq. 1) generalizes our conclusions. 

We specifically avoided the use of empirical resting state data despite the wide 

availability of data from our experiments and from publicly available datasets because 

we feel this would distract from the point we are trying to convey. Applying GSReg in 

empirical data will certainly change the correlations between brain regions; this much is 

known and acknowledged by all. However interpreting resultant correlations remains a 

subjective exercise. We do not have a way to describe the underlying model for the 

empirical data and thus cannot definitely gauge the effects of GSReg on the final 

interpretation. To our mind, the question should not be whether our models are an 

accurate reflection of empirical data, rather, under which model scenario would GSReg 

not affect the final interpretations? 

Conclusions: 

We used a basic model to illustrate the effects of applying Global Signal Regression on 

the interpretability of correlation maps in resting state FMRI. We conclude that GSReg 

and its variants should not be used when studying connectivity between brain areas. 

Not only because GSReg biases correlations and complicates the interpretation of 

negative correlations, but also because it introduces a regionally varying correlation bias 

that is dependent on the unknown true underlying correlation structure.  GSReg can 

create consistent correlations between regions that may never have had any in the first 

place. In addition, GSReg alters local and long-range correlations and is unlikely to 

correct for differences in background and noise levels between subjects. The 
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conclusions we drew from the illustrative models are encapsulated by the derived 

closed form expression of the correlation matrix’s bias after GSReg. 

We specifically avoided the use of empirical data to make our point because the 

underlying model is unknown and resultant correlation is always subject to subjective 

interpretation. In empirical data, GSReg’s distorting effect on interregional correlations is 

likely more complex than it is in our basic model. 
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Figure Captions: 

Figure 1:  

Two timeseries sharing a common component along with their average (GS). The grey 

boxes highlight the common component predictably present in all three series. The 

column on the right shows the same two series after GSReg. The common component 

(grey highlight) has been attenuated but is underfit. Note however the unique 

components of each timeseries are now present in both series. This example 

encapsulates the basic problem with GSReg.  

 

Figure 2:  

A- Simulation brain model consisting of three regions and the background. The signals 

generated in each region proper are independent of those in other regions. However, 

the observed signal at each voxel is the sum of the signal proper to that region, plus the 

signal from the background, and noise.  

B- Group maps of mean Fisher-transformed correlation maps for a seed in the middle of 

region 1 (left column), and a seed in the middle of region 2 (right column). The three 

rows show the group correlation maps under the three pre-processing scenarios. All 

maps are arbitrarily thresholded at p < 10-4, uncorrected. Reddish hues indicate positive 

correlations, while bluish ones indicate negative ones. Preprocessing strategy has great 

influence over how seed timeseries end up correlating with the different regions, thereby 

greatly affecting the narrative of which brain areas covary together during rest. 

The data in this figure can be recreated interactively with minimal effort using the demo 

script http://afni.nimh.nih.gov/pub/dist/edu/@GSReg_demo  
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Figure 3: 

Two-group model case showing the effects of background fluctuations and noise level 

changes on correlation group contrasts with or without GSReg. There are no underlying 

differences between the groups. In row 1, noise gain (gn) in group B was twice that of 

group A. In row 2, both gn and background gain (gb) of Group B was double that of 

group A. In row 3, only gb was doubled in Group B. The left column shows group 

contrasts for a seed in region 1 (+ symbol). The column on the right shows the same 

contrast after GSReg. 

 

Figure 4:  

In this second two-group contrast, the SNR levels are the same (in contrast to Fig 3). 

The only difference between the two groups is the addition of correlation between 

regions 1 and 2 (‘long range’). The presence of local correlations (within-region) is 

indicated by the color of the square representing each of the 3 regions (see colorbar to 

the right). The presence of inter-regional correlations (p < 10-4) is indicated with a 

colored solid line, whereas dashed lines indicate the absence of correlation. Correlation 

values here represent group-averaged and connection-averaged values, calculated 

over all possible seed voxels for each individual simulated subject.  The left column 

shows correlations in group A (row 1) and group B (row 2) prior to GSReg. The second 

column shows the correlation results after GSRreg. Note the distortion of inter-regional 

correlations in the two groups, as predicted from the results of Fig. 2 and 3. The last 

column shows the contrast between group correlation maps after GSRreg. Note the 
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dramatically different intra- and inter-regional correlation structure (p < 10-4 for all 

comparisons), in contrast to the original data, which contained only one real group 

difference - a long range positive correlation between regions 1 and 2 in Group B. 
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